Age-Triggered and Dark-Induced Leaf Senescence Require the bHLH Transcription Factors PIF3, 4, and 5

نویسندگان

  • Yi Song
  • Chuangwei Yang
  • Shan Gao
  • Wei Zhang
  • Lin Li
  • Benke Kuai
چکیده

Leaf senescence can be triggered and promoted by a large number of developmental and environmental factors. Numerous lines of evidence have suggested an involvement of phytochromes in the regulation of leaf senescence, but the related signaling pathways and physiological mechanisms are poorly understood. In this study, we initially identified phytochrome-interacting factors (PIFs) 3, 4, and 5 as putative mediators of leaf senescence. Mutations of the PIF genes resulted in a significantly enhanced leaf longevity in age-triggered and dark-induced senescence, whereas overexpressions of these genes accelerated age-triggered and dark-induced senescence in Arabidopsis. Consistently, loss-of-function of PIF4 attenuated dark-induced transcriptional changes associated with chloroplast deterioration and reactive oxygen species (ROS) generation. ChIP-PCR and Dual-Luciferase assays demonstrated that PIF4 can activate chlorophyll degradation regulatory gene NYE1 and repress chloroplast activity maintainer gene GLK2 by binding to their promoter regions. Finally, dark-induced ethylene biosynthesis and ethylene-induced senescence were both dampened in pif4, suggesting the involvement of PIF4 in both ethylene biosynthesis and signaling pathway. Our study provides evidence that PIF3, 4, and 5 are novel positive senescence mediators and gains an insight into the mechanism of light signaling involved in the regulation of leaf senescence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Phytochrome-Interacting bHLH Transcription Factors Repress Premature Seedling Photomorphogenesis in Darkness

BACKGROUND An important contributing factor to the success of terrestrial flowering plants in colonizing the land was the evolution of a developmental strategy, termed skotomorphogenesis, whereby postgerminative seedlings emerging from buried seed grow vigorously upward in the subterranean darkness toward the soil surface. RESULTS Here we provide genetic evidence that a central component of t...

متن کامل

Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis.

Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plan...

متن کامل

Frenemies: antagonistic bHLH/bZIP transcription factors integrate light and reactive oxygen species signaling in Arabidopsis.

Although plants are autotrophs, they don’t start out that way. During early plant growth, reserves stored by the mother plant are mobilized to provide the seedling with energy and carbon until the switch to autotrophic growth occurs (Chen and Thelen, 2010). This crucial developmental switch involves light signal transduction and the production of reactive oxygen species (ROS), including singlet...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence

Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity (PTI) and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014